On Iso-octane Combustion with Ozone Addition under HCCI Engine-Like Conditions

نویسندگان

چکیده

Abstract Numerical simulations were carried out to study the influence of ozone on Ignition Delay Time (IDT) iso-octane/air mixtures under typical operating conditions HCCI engines. 0-D and 2-D CFD compute IDT characterize compression, combustion, expansion in an engine, respectively. A kinetic model was developed by merging a mechanism for iso-octane, sub-mechanism nitrogen oxides, ozone. The used investigate iso-octane/air/ozone engines running with very lean (equivalence ratio equal 0.3). Parametric analyses considering different values temperature (500 1200 K), pressure (15 40 bar) concentration (0 50 ppm). results show that as increases decreases, greater impact at low temperatures, NTC (Negative Temperature Coefficient) effect decreases. However, reduction addition is less increases, especially temperatures. An increased pressure, other hand, generally promotes faster decomposition enhances all temperatures except range 760-840 K, where opposite occurs due phenomenon. Finally, when high, i.e. both have little percentage IDT.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Investigation of Spark Ignition Engine Fueled with Ethanol/Iso-octane and Methanol/Iso-octane Fuel Blends

Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol and methanol are known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol and methanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types ...

متن کامل

Active Combustion Control of Diesel HCCI Engine: Combustion Timing

We propose a model based control strategy to adapt the injection settings according to the air path dynamics on a Diesel HCCI engine. This approach complements existing airpath and fuelpath controllers, and aims at accurately controlling the start of combustion. For that purpose, start of injection is adjusted based on a Knock Integral Model and intake manifold conditions. Experimental results ...

متن کامل

Homogeneous Charge Compression Ignition (HCCI) Combustion Engine- A Review

At present, it is highly required from the automobile sector to develop clean technologies with lower fuel consumption for ambient air quality improvement, green house gas reduction and energy security. Furthermore, due to continuously stringent emission legislation and the fast depletion of the primary energy resources, the development of new highly efficient and environment friendly combustio...

متن کامل

Multi-Dimensional Simulation of n-Heptane Combustion under HCCI Engine Condition Using Detailed Chemical Kinetics

In this study, an in-house multi-dimensional code has been developed which simulates the combustion of n-heptane in a Homogeneous Charge Compression Ignition (HCCI) engine. It couples the flow field computations with detailed chemical kinetic scheme which involves the multi-reactions equations. A chemical kinetic scheme solver has been developed and coupled for solving the chemical reactions an...

متن کامل

Reformer Gas Application in Combustion Onset Control of HCCI Engine

Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2385/1/012086